Um guia de como usar análises de cohorts para medir a eficiência de investimentos em marketing tanto para jornadas de compras com ciclo mais curto, como para jornadas de compra com ciclos mais longos. 

Texto de Antoine Curti

O que é uma análise de Cohort?

É um conjunto de dados (geralmente em formato de tabela) que te ajuda entender como uma “safra” de pessoas e resultados se comportam ao longo do tempo.

A origem do cohort vem da medicina: médicos separavam grupos (“safras”) de pessoas para acompanhar o comportamento de doenças e tratamentos ao longo do tempo.

No mundo do Marketing/Growth, essa análise geralmente vai te ajudar a responder perguntas sobre métricas como:

O primeiro ponto a entender sobre Cohort é que todas as análises serão ao longo de “Unidades de Tempo”, ou seja:

E os “tipos de Cohorts” costumam ser divididos em dois grupos:

Vamos começar com exemplos práticos e simples, antes de aprofundar nas fórmulas de excel/google sheets.

Como otimizar as decisões no marketing usando Análise de Cohorts - Antoine Curti - Purple Metrics

Exemplo Prático A: iFood (app)

Vamos supor que somos gerentes de growth no iFood – um app de delivery de comida e supermercado com um ciclo de vendas relativamente curto – e queremos responder algumas perguntas que só o nosso amigo Cohort pode responder, como por exemplo:

Pergunta-exemplo  1) Ao longo de 2024, estamos adquirindo usuários com maior ou menor frequência de compra?

(Eu jamais olharia um gráfico sobre minha frequência de compra no iFood, pois meu coração e minha fatura do cartão não aguentariam la verdad.)

Para responder esta pergunta, vamos montar uma tabela fictícia de cohort.

Antes de montar sua tabela, você precisa saber que toda análise de cohort vai ter geralmente 4 “ingredientes”:

  1. Linhas (cohorts): serão as característica de agrupamento > nesse caso vamos agrupar os usuários baseado no mês em que fizeram seu cadastro no iFood (cohort de aquisição).
  2. Colunas (tempo): serão as “unidades de tempo” > nesse caso vamos analisar ao longo dos meses do ano
  3. Métricas (resultado): analisaremos a frequência média de pedidos realizados
  4. Filtro/Segmento (base de dados): vamos filtrar apenas usuários cadastrados em 2024 que fizeram ao menos 1 pedido, pois queremos apenas a média de pedidos dos usuários ativos.

Sua planilha vai ficar mais ou menos assim:

Cohort Exemplo iFood – Imagem 1 (dados fictícios e sem nenhum vínculo real ao iFood)

Como ler essa tabela:

Veja que o Cohort que se cadastrou em Janeiro 2024 (pintado de laranja) fez uma média de 2 pedidos no seu primeiro mês de uso do app (janeiro 24), e em Junho 24 já estavam fazendo uma média de 7 pedidos por mês. Ou seja, a frequência foi 350% maior!

Continuando a análise ao longo dos meses, o Cohort de Fevereiro 24 (em azul na tabela abaixo) começou mais devagar, com apenas 1 pedido por mês, mas em Junho 24 essa galera fez 9 pedidos em média. 900% de crescimento em 5 meses.

Cohort Exemplo iFood – Imagem 2 (dados fictícios e sem nenhum vínculo real ao iFood)

E o Cohort de Abril 24 (vermelho) foi um mês fora da curva, pois a média de pedidos no primeiro mês foi 8:

Cohort Exemplo iFood – Imagem 3 (dados fictícios e sem nenhum vínculo real ao iFood)

Então, voltando à pergunta 1: ao longo de 2024, estamos adquirindo usuários com maior ou menor frequência de compra? 

A resposta seria: sim, estamos trazendo usuários ativos com cada vez maior frequência de compra ao longo do tempo. 

Uma ótima notícia pro time de growth, pois mostra que a qualidade da aquisição aumentou.

Mas essa resposta gera uma nova pergunta: por que será que os usuários estão comprando com mais frequência?

Uma hipótese pode ser que: usuários que compram Comida + Mercado compram com maior frequência, e como aumentamos as campanhas de Mercado, isso pode ter correlação no resultado. 

Então bora aplicar mais uma análise de Cohort para entender se essas hipóteses se aplicam.

Pergunta-exemplo 2) Usuários que compram Comida + Mercado geram receita maior ao longo do tempo comparado com quem compra apenas Comida ou apenas Mercado?

Bora mapear nossos 4 ingredientes da tabela cohort:

E nossa tabela fica mais ou menos assim:

Cohort Exemplo iFood – Imagem 4 (dados fictícios e sem nenhum vínculo real ao iFood)

Podemos ver que usuários que compram Tanto Comida Quanto Mercado no iFood, possuem uma média de gasto acumulado de R$2.900 reais no sexto mês. Isso é 80% maior que a média de receita acumulada dos compradores de “Apenas Comida” e incríveis 383% maior vs Compradores de “Apenas Mercado”.

Com esse insight, agora o time de growth poderia checar se na Pergunta 1, a frequência de pedidos está aumentando porque os usuários adquiridos estão cada vez mais sendo usuários “Comida + Mercado”. E se for verdade, o próximo passo é definir hipóteses de como incentivar ainda mais esse comportamento (exemplo: pop-up com cupom de mercado quando finaliza pedido de comida. Já caiu num desse por aí?).

Pergunta-exemplo 3) Churn: Quantos % das pessoas cadastradas fazem pedido no primeiro mês? E no segundo? E em 6 meses?
A análise de Cohort é muito utilizada em análises de Churn. Tem até um post muito bom da Amplitude sobre o tema (em inglês), por isso não vou entrar em detalhes nesse artigo nem no exemplo do iFood. Aqui está o link do artigo e um print de um relatório de cohort ilustrando o % de usuários que voltam a usar um app nos dias seguintes da aquisição:

Tabela extraída do blog da Amplitude: churn-rate-cohort-analysis

Para resumir: no print (extraído do artigo da Amplitude)  podemos ver que apenas 9.97% dos usuários acessam no dia seguinte ao cadastro, enquanto 4.93% dos usuários totais acessam a plataforma no quinto dia após a aquisição.

Além de analisar Acessos como no print acima, essa análise pode ser feita para analisar o “churn” de qualquer métrica, seja atrelado a receita como “Pedidos no iFood” e “Renovação de Assinatura na Netflix” como “churn” de comportamento “Restaurantes Visualizados no iFood” ou “Minutos Assistidos na Netflix”. 


Como otimizar as decisões no marketing usando Análise de Cohorts - Antoine Curti - Purple Metrics

Exemplo Prático B: Agência de Viagens (geração de leads)

Existem empresas com ciclo de vendas mais longo, diferente do iFood que o usuário já faz cadastro e faz o primeiro pedido na mesma semana, uma agência de viagens pode levar meses pra fechar o pacote com um lead.

Nesses casos, é fundamental usar a análise de cohort de aquisição para calcular a Receita e ROAS das suas campanhas de mídia, por exemplo.

Cohort Exemplo Pacote de Viagem

Na tabela acima, temos os 4 “ingredientes”:

O que podemos observar:

É o que chamamos aqui na agência nowle de visão “Fechamento” vs visão “Cohort”: 

Abaixo um exemplo de uma visão Cohort real:

Veja que nessa tabela não precisamos usar as colunas com unidades de tempo. Apenas usamos a lógica de cohort pra somar a receita gerada em cada semana (coluna Date G).

Esse exemplo reforça que cohort é tanto uma análise em si (no formato tabela), mas também é um “modo de calcular” uma métrica, que não precisa ser sempre apresentada nas colunas ao longo do tempo, mas sim calculada com os dados ao longo do tempo.


Exemplo Prático C: Loja de Roupas (e-commerce)

Vamos analisar qual categoria de produto traz compradores com maior Receita LTV ao longo dos meses.

Os 4 ingredientes da tabela de Cohort que vamos precisar:

E nossa planilha ficará assim:

Dica Importante: muitas vezes as colunas de cohort vão indicar apenas as unidades de tempo após a “aquisição”, ex: 

Então é comum que as tabelas/relatórios de cohort tenham colunas numeradas dessa forma:

Principais insights que essa planilha nos trás: 

Dessa vez, vamos entrar um pouco no detalhe das fórmulas no Google Sheets.

Vamos precisar de uma base com as seguintes colunas:

Para facilitar, criamos uma base fictícia onde cada pedido foi feito com apenas uma categoria (ex: ou Sapato ou Camiseta ou Vestido)

Aqui tem as primeiras 5 linhas dessa base para ilustrar:

Então criamos nosso “esqueleto da tabela cohort”:

Agora vamos adicionar as fórmulas para calcular o cohort. Para calcular a primeira { fórmula } em laranja no print, precisaremos da seguinte lógica:

Obs: não sou analista/especialista em dados, criei esse exemplo simples pra tentar tangibilizar melhor o raciocínio “debaixo do capô” de uma análise cohort no excel/sheets!


Dados os exemplos, um bate-bola sobre cohorts

Qual a importância do Cohort em Marketing e Growth?

A análise de Cohort é fundamental para responder perguntas importantes, como:

Como fazer análise de cohort?

Quais ferramentas oferecem análises de Cohort?


Referências:

Evolution of the Cohort Study

Sobre o autor

Antoine Curti (Linkedin) é co-founder da nowle.io, agência de marketing para startups e pequenas e médias empresas com foco em Paid Ads, Analytics, Design, SEO and CRM. Anteriormente, foi estrategista no Google durante 3 anos.

Gostou deste conteúdo? Veja também:

A importância das correlações no mundo do marketing

Branding precisa falar sobre receita financeira

Modelos de atribuição e o impacto do branding no marketing


Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *